Abstract
AbstractControllable optical properties are important for optoelectronic applications. Based on the unique properties and potential applications of two-dimensional Janus WSSe, we systematically investigate the strain-modulated electronic and optical properties of WSSe bilayer through the first-principle calculations. The preferred stacking configurations and chalcogen orders are determined by the binding energies. The bandgap of all the stable structures are found sensitive to the external stress and could be tailored from semiconductor to metallicity under appropriate compressive strains. Atomic orbital projected energy bands reveal a positive correlation between the degeneracy and the structural symmetry, which explains the bandgap evolutions. Dipole transition preference is tuned by the biaxial strain. A controllable transformation between anisotropic and isotropic optical properties is achieved under an around − 6%~− 4% critical strain. The strain controllable electronic and optical properties of the WSSe bilayer may open up an important path for exploring next-generation optoelectronic applications.
Funder
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献