Author:
Shan Dan,Wang Menglong,Sun Daoyuan,Cao Yunqing
Abstract
AbstractVarious doping concentrations of boron (B)-doped germanium nanocrystal (Ge NC) films were prepared using the plasma-enhanced chemical vapor deposition (PECVD) technique followed by thermal annealing treatment. The electronic properties of B-doped Ge NCs films combined with the microstructural characterization were investigated. It is worthwhile mentioning that the Hall mobilities $${\mu }_{\mathrm{Hall}}$$
μ
Hall
of Ge NCs films were enhanced after B doping and reached to the maximum of 200 cm2 V−1, which could be ascribed to the reduction in surface defects states in the B-doped films. It is also important to highlight that the temperature-dependent mobilities $${\mu }_{\mathrm{H}}(T)$$
μ
H
(
T
)
exhibited different temperature dependence trends in the Ge NCs films before and after B doping. A comprehensive investigation was conducted to examine the distinct carrier transport properties in B-doped Ge NC films, and a detailed discussion was presented, focusing on the scattering mechanisms involved in the transport process.
Funder
Major project of Natural Science Foundation of Education Department in Jiangsu Province
Science and Technology Planning Project of Yangzhou City
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献