Phase prediction, microstructure, and mechanical properties of spark plasma sintered Ni–Al–Ti–Mn–Co–Fe–Cr high entropy alloys

Author:

Olorundaisi Emmanuel,Babalola Bukola J.,Teffo Moipone L.,Anamu Ufoma S.,Olubambi Peter A.,Fayomi Juwon,Ogunmefun Anthony O.

Abstract

AbstractThe effect of mechanical alloying on the development of Ni–Al–Ti–Mn–Co–Fe–Cr high entropy alloys (HEAs) utilizing the spark plasma sintering (SPS) method is the main goal of this study. A bulk sample was fabricated using SPS after the alloys were mixed for 12 h. Thermodynamic simulation, X-ray diffraction, scanning electron microscopy, nanoindentation, and microhardness were used to investigate the microstructure and mechanical properties of the as-mixed powders. The master alloy was made of NiAl and was subsequently alloyed with Ti, Mn, Co, Fe, and Cr at different compositions to develop HEAs at a sintering temperature of 850 °C, a heating rate of 100 °C/min, a pressure of 50 MPa, and a dwelling time of 5 min. A uniform dispersion of the alloying material can be seen in the microstructure of the sintered HEAs with different weight elements. The grain size analysis shows that the Ni25Al25Ti8Mn8Co15Fe14Cr5 alloy exhibited a refined structure with a grain size of 2.36 ± 0.27 µm compared to a coarser grain size of 8.26 ± 0.43 μm attained by the NiAl master alloy. Similarly, the HEAs with the highest alloying content had a greater microstrain value of 0.0449 ± 0.0036, whereas the unalloyed NiAl had 0.00187 ± 0.0005. Maximum microhardness of 139 ± 0.8 HV, nanohardness of 18.8 ± 0.36 GPa, elastic modulus of 207.5 ± 1.65 GPa, elastic recovery (We/Wt) of 0.556 ± 0.035, elastic strain to failure (H/Er) of 0.09.06 ± 0.0027, yield pressure (H3/$$E_{{\text{r}}}^{2}$$ E r 2 ) of 0.154 ± 0.0055 GPa, and the least plasticity index (Wp/Wt) of 0.444 ± 0.039 were attained by Ni25Al25Ti8Mn8Co15Fe14Cr5. A steady movement to the left may be seen in the load–displacement curve. Increased resistance to indentation by the developed HEAs was made possible by the increase in alloying metals, which ultimately led to higher nanohardness and elastic modulus.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3