Comparative Studies on Two-Dimensional (2D) Rectangular and Hexagonal Molybdenum Dioxide Nanosheets with Different Thickness

Author:

Wazir Nasrullah,Ding Chunjie,Wang Xianshuang,Ye Xin,Lingling Xie,Lu Tianqi,Wei Li,Zou Bingsuo,Liu Ruibin

Abstract

AbstractMolybdenum dioxide (MoO2) a kind of semi-metal material shows many unique properties, such as high melting point, good thermal stability, large surface area-to-volume ratio, high-density surface unsaturated atoms, and excellent conductivity. There is a strong connection between structural type and optoelectronic properties of 2D nanosheet. Herein, the rectangular and hexagonal types of thin and thick MoO2 2D nanosheets were successfully prepared from MoO3 powder using two-zone chemical vapor deposition (CVD) with changing the experimental parameters, and these fabricated nanosheets displayed different colors under bright-field microscope, possess margins and smooth surface. The thickness of the blue hexagonal and rectangular MoO2 nanosheets are ~ 25 nm and ~ 30 nm, respectively, while typical thickness of orange-colored nanosheet is around ~ 100 nm. Comparative analysis and investigations were carried out, and mix-crystal phases were indentified in thick MoO2 as main matrix through Raman spectroscopy. For the first time, the emission bands obtained in thick MoO2 nanosheets via a Cathodoluminescence (CL) system exhibiting special properties of semi-metallic and semi-conductors; however, no CL emission detected in case of thin nanosheets. The electrical properties of thin MoO2 nanosheets with different morphologies were compared, and both of them demonstrated varying metallic properties. The resistance of thin rectangular nanosheet was ~ 25 Ω at ± 0.05 V while 64 Ω at ± 0.05 V was reported for hexagonal nanosheet, and observed lesser resistance by rectangular nanosheet than hexagonal nanosheet.

Funder

National Key Research and Development Projec

National Natural Science Foundation of China (NSFC)

Fundamental Research Funds for Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3