Author:
Fan Hualin,Yan Wei,Ding Yicheng,Bao Zhihao
Abstract
AbstractFlame spray pyrolysis was a process to produce oxide nanoparticles in a self-sustaining flame. When the produced nanoparticles were deposited on a substrate, nanostructured oxide thin films could be obtained. However, the size of the thin film was usually limited by the fixed substrate. Here, we demonstrated that thin film with a large area could be deposited by using the moving substrate, which was precisely controlled by servo motors. As a result, the flame tip could scan over the substrate and deposit the nanoparticles on it line by line, analogues to a printing process called flame-assisted printing (FAP). As an example, nanostructured bismuth-oxide thin films with a size of up to 20 cm × 20 cm were deposited with the FAP process. The bismuth-oxide thin film exhibited a stable electrochromic property with a high modulation of 70.5%. The excellent performance could be ascribed to its porous nanostructure formed in the FAP process. The process can be extended to deposit other various oxides (e.g., tungsten-oxide) thin films with a large size for versatile applications.
Funder
National Key Research and Development Program of China
National Science Foundation of China programs
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献