Anionic polymer-coated magnetic nanocomposites for immobilization with palladium nanoparticles as catalysts for the reduction of 4-nitrophenol

Author:

Mahanitipong UsanaORCID,Tummachote JakkritORCID,Thoopbucha WachirawitORCID,Inthanusorn WasawatORCID,Rutnakornpituk MethaORCID

Abstract

AbstractThis study focuses on the synthesis of magnetite nanoparticles (MNP) coated with poly(poly(ethylene glycol) methacrylate) (PPEGMA) and/or poly(acrylic acid) (PAA) to anchor palladium nanoparticles (Pd) for their application as recyclable catalysts in the reduction of 4-nitrophenol (4NP). It was hypothesized that the abundance of oxygen atoms in PPEGMA enabled coordination with the Pd and provided good water dispersibility of the nanocomposites, while anionic PAA stabilized Pd and reduced the catalyst aggregation through electrostatic repulsion. Three different polymer coatings on MNP (PAA, PPEGMA, and PAA-co-PPEGMA polymers) were investigated to assess their influence on both the catalytic activity and reusability of the catalysts. Transmission electron microscopy (TEM) analysis indicated the distribution of spherical Pd nanoparticles (3–5 nm in diameter) and MNP (9–12 nm in diameter). Photocorrelation spectroscopy (PCS) revealed an average hydrodynamic size of the catalysts ranging from 540 to 875 nm in diameter, with a negative charge on their surface. The Pd content of the catalysts ranged from 4.30 to 6.33% w/w. The nanocomposites coated with PAA-co-PPEGMA polymers exhibited more favorable catalytic activity in the 4NP reduction than those coated with PAA or PPEGMA homopolymers. Interestingly, those containing PAA (e.g., PAA and PAA-co-PPEGMA polymers) exhibited good reusability for the 4NP reduction with a slight decrease in their catalytic performance after 26 cycles. This indicates the important role of carboxyl groups in PAA in maintaining high tolerance after multiple uses. Graphical abstract

Funder

National Research Council of Thailand

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3