Brain-Targeted Polysorbate 80-Emulsified Donepezil Drug-Loaded Nanoparticles for Neuroprotection

Author:

Tao Xiaojun,Mao Siyu,Zhang Qiufang,Yu Hongyuan,Li Yu,He Xiangling,Yang Shanyi,Zhang Zhirong,Yi Ziqi,Song Yujiao,Feng XingORCID

Abstract

AbstractMost Alzheimer’s disease drugs do not work efficiently because of the blood–brain barrier. Therefore, we designed a new nanopreparation (PS-DZP-CHP): cholesterol-modified pullulan (CHP) nanoparticle with polysorbate 80(PS) surface coverage, as donepezil (DZP) carrier to realize brain tissue delivery. By size analysis and isothermal titration calorimetry, we chose the optimal dosing ratio of the drug with nanomaterials (1:5) and designed a series of experiments to verify the efficacy of the nanoparticles. The results of in vitro release experiments showed that the nanoparticles can achieve continuous drug release within 72 h. The results of fluorescence observation in mice showed a good brain targeting of PS-DZP-CHP nanoparticles. Furthermore, the nanoparticle can enhance the drug in the brain tissue concentration in mice. DZP-CHP nanoparticles were used to pretreat nerve cells with Aβ protein damage. The concentration of lactate dehydrogenase was determined by MTT, rhodamine 123 and AO-EB staining, which proved that DZP-CHP nanoparticles had a protective effect on the neurotoxicity induced by Aβ25–35 and were superior to free donepezil. Microthermal perpetual motion meter test showed that PS-DZP-CHP nanoparticles have an affinity with apolipoprotein E, which may be vital for this nanoparticle targeting to brain tissue.

Funder

General Project of Hunan Natural Science Foundation

Science and Technology Bureau, Changsha

The Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research

Hunan Provincial Science and Technology Department

Natural Science Foundation of Hubei Province

Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3