Total variation denoising-based method of identifying the states of single molecules in break junction data

Author:

Komoto YukiORCID,Ryu JihoORCID,Taniguchi MasateruORCID

Abstract

AbstractBreak junction (BJ) measurements provide insights into the electrical properties of diverse molecules, enabling the direct assessment of single-molecule conductances. The BJ method displays potential for use in determining the dynamics of individual molecules, single-molecule chemical reactions, and biomolecules, such as deoxyribonucleic acid and ribonucleic acid. However, conductance data obtained via single-molecule measurements may be susceptible to fluctuations due to minute structural changes within the junctions. Consequently, clearly identifying the conduction states of these molecules is challenging. This study aims to develop a method of precisely identifying conduction state traces. We propose a novel single-molecule analysis approach that employs total variation denoising (TVD) in signal processing, focusing on the integration of information technology with measured single-molecule data. We successfully applied this method to simulated conductance traces, effectively denoise the data, and elucidate multiple conduction states. The proposed method facilitates the identification of well-defined plateau lengths and supervised machine learning with enhanced accuracies. The introduced TVD-based analytical method is effective in elucidating the states within the measured single-molecule data. This approach exhibits the potential to offer novel perspectives regarding the formation of molecular junctions, conformational changes, and cleavage.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Corporation

Core Research for Evolutional Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3