Abstract
AbstractOleanolic acid has been used only as a subsidiary agent in cosmetic products. The aim of the study is to show the effect of oleanolic acid as an active ingredient for the alleviation of wrinkles in humans and to develop a polymeric micelle formulation that enables poorly soluble oleanolic acid to be used as a main ingredient in cosmetic products for reducing wrinkles. The solubility of oleanolic acid was evaluated in solubilizers, surfactants, and polymers. The particle sizes and shapes of polymeric micelles containing oleanolic acid were evaluated by electrophoretic light scattering spectrophotometer and scanning electron cryomicroscopy. Encapsulation efficiency and skin permeation were measured by HPLC. Stability of the polymeric micelles stored at 40 °C for 3 months was evaluated by visual observation, particle size measurement, and oleanolic acid content measurement. Polymeric micelles in final product ampoule form were applied around the eyes of 23 female subjects for 8 weeks. Five skin parameters were evaluated by optical profilometry every 4 weeks for 8 weeks. In addition, professionals made visual observations of the skin and a human skin irritation study was conducted. Polymeric micelles of oleanolic acid with a particle size of less than 100 nm were prepared using Capryol 90® and poloxamer. The skin permeation rate of the oleanolic acid in the polymeric micelles was higher than that in the other solutions made of oleanolic acid dispersed in 2 different surfactants. No significant changes in particle size, color, or oleanolic acid content were observed, and the polymeric micelles stored at 40 °C for 3 months did not undergo phase separation. After 8 weeks of application, skin irritation had not developed and all five parameters evaluated by optical profilometry as well as the visual evaluation scores were significantly improved. This study showed that the polymeric micelles of oleanolic acid prepared in this study were stable and effective at alleviating wrinkles in humans as the principal active ingredient. Based on these findings, it is expected that polymeric micelles of oleanolic acid can be widely used in cosmetic applications.
Funder
the Korea Research Institute of Chemical Technology (KRICT) grant funded by the Korean government
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献