Author:
Kong Xiangqian,He Yuxiang,Zhou Hua,Gao Peixian,Xu Lei,Han Zonglin,Yang Le,Wang Mo
Abstract
AbstractElectrospun polymer nanofibers have gained much attention in blood vessel tissue engineering. However, conventional nanofiber materials with the deficiencies of slow endothelialization and thrombosis are not effective in promoting blood vessel tissue repair and regeneration. Herein, biomimetic gelatin (Gt)/polycaprolactone (PCL) composite nanofibers incorporating a different amount of chondroitin sulfate (CS) were developed via electrospinning technology to investigate their effects on antithrombogenicity and endothelial cell affinity. Varying CS concentrations in PG nanofibers affects fiber morphology and diameter. The CS/Gt/PCL nanofibers have suitable porosity (~ 80%) and PBS solution absorption (up to 650%). The introduction of CS in Gt/PCL nanofibers greatly enhances their anticoagulant properties, prolongs their coagulation time, and facilitates cell responses. Particularly, 10%CS/Gt/PCL nanofibers display favorable cell attachment, elongation, and proliferation. Thus, the Gt/PCL nanofibers containing a certain amount of CS could be excellent candidates as a promising tissue-engineering scaffold in blood vessel repair and regeneration.
Funder
Key research plan of Shandong Province
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献