Chondroitin Sulfate/Polycaprolactone/Gelatin Electrospun Nanofibers with Antithrombogenicity and Enhanced Endothelial Cell Affinity as a Potential Scaffold for Blood Vessel Tissue Engineering

Author:

Kong Xiangqian,He Yuxiang,Zhou Hua,Gao Peixian,Xu Lei,Han Zonglin,Yang Le,Wang Mo

Abstract

AbstractElectrospun polymer nanofibers have gained much attention in blood vessel tissue engineering. However, conventional nanofiber materials with the deficiencies of slow endothelialization and thrombosis are not effective in promoting blood vessel tissue repair and regeneration. Herein, biomimetic gelatin (Gt)/polycaprolactone (PCL) composite nanofibers incorporating a different amount of chondroitin sulfate (CS) were developed via electrospinning technology to investigate their effects on antithrombogenicity and endothelial cell affinity. Varying CS concentrations in PG nanofibers affects fiber morphology and diameter. The CS/Gt/PCL nanofibers have suitable porosity (~ 80%) and PBS solution absorption (up to 650%). The introduction of CS in Gt/PCL nanofibers greatly enhances their anticoagulant properties, prolongs their coagulation time, and facilitates cell responses. Particularly, 10%CS/Gt/PCL nanofibers display favorable cell attachment, elongation, and proliferation. Thus, the Gt/PCL nanofibers containing a certain amount of CS could be excellent candidates as a promising tissue-engineering scaffold in blood vessel repair and regeneration.

Funder

Key research plan of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3