Author:
Brennan Lorcan J,Purcell-Milton Finn,Salmeron Aurélien S,Zhang Hui,Govorov Alexander O,Fedorov Anatoly V,Gun’ko Yurii K
Abstract
Abstract
In this manuscript, for the first time, we report a combination of electrophoretic and sintering approaches for introducing gold nanoparticles into nanoporous TiO2 films to generate ‘hot’ electrons resulting in a strong enhancement of photocurrent. The Au-TiO2 nanocomposite material was prepared by the electrophoretic deposition of gold nanoparticles into a porous nanoparticulate titanium dioxide film, creating a photoactive electrode. The composite film demonstrates a significant increase in the short circuit current (I
sc) compared to unmodified TiO2 when excited at or close to the plasmon resonance of the gold nanoparticles. Then, we employed a thermal ripening process as a method of increasing the I
sc of these electrodes and also as a method of tuning the plasmon peak position, with a high degree of selectivity. Photo-electrochemical investigations revealed that the increase in photocurrent is attributed to the generation and separation of plasmonically generated hot electrons at the gold/TiO2 interface and also the inter-band generation of holes in gold nanoparticles by photons with λ < 520 nm. Theoretical modelling outputs perfectly match our results obtained from photo-physical studies of the processes leading to enhanced photocurrent.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献