An Enzyme-Free Sandwich Amperometry-Type Immunosensor Based on Au/Pt Nanoparticle-Functionalized Graphene for the Rapid Detection of Avian Influenza Virus H9 Subtype

Author:

Huang Jiaoling,Xie Zhixun,Li Meng,Luo Sisi,Deng Xianwen,Xie Liji,Fan Qing,Zeng Tingting,Zhang Yanfang,Zhang Minxiu,Wang Sheng,Xie Zhiqin,Li Dan

Abstract

AbstractAvian influenza virus H9 subtype (AIV H9) has contributed to enormous economic losses. Effective diagnosis is key to controlling the spread of AIV H9. In this study, a nonenzymatic highly electrocatalytic material was prepared using chitosan (Chi)-modified graphene sheet (GS)-functionalized Au/Pt nanoparticles (GS-Chi-Au/Pt), followed by the construction of a novel enzyme-free sandwich electrochemical immunosensor for the detection of AIV H9 using GS-Chi-Au/Pt and graphene–chitosan (GS-Chi) nanocomposites as a nonenzymatic highly electrocatalytic material and a substrate material to immobilize capture antibodies (avian influenza virus H9-monoclonal antibody, AIV H9/MAb), respectively. GS, which has a large specific surface area and many accessible active sites, permitted multiple Au/Pt nanoparticles to be attached to its surface, resulting in substantially improved conductivity and catalytic ability. Au/Pt nanoparticles can provide modified active sites for avian influenza virus H9-polyclonal antibody (AIV H9/PAb) immobilization as signal labels. Upon establishing the electrocatalytic activity of Au/Pt nanoparticles on graphene towards hydrogen peroxide (H2O2) reduction for signal amplification and optimizing the experimental parameters, we developed an AIV H9 electrochemical immunosensor, which showed a wide linear range from 101.37 EID50 mL−1 to 106.37 EID50 mL−1 and a detection limit of 100.82 EID50 mL−1. This sandwich electrochemical immunosensor also exhibited high selectivity, reproducibility and stability.

Funder

Guangxi Science and Technology Projects

Guangxi Science Great Special Program

Guangxi BaGui Scholars Program Foundation

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3