Research on privacy information retrieval model based on hybrid homomorphic encryption

Author:

Song Wei-taoORCID,Zeng Guang,Zhang Wen-zheng,Tang Dian-hua

Abstract

AbstractThe computational complexity of privacy information retrieval protocols is often linearly related to database size. When the database size is large, the efficiency of privacy information retrieval protocols is relatively low. This paper designs an effective privacy information retrieval model based on hybrid fully homomorphic encryption. The assignment method is cleverly used to replace a large number of homomorphic encryption operations. At the same time, the multiplicative homomorphic encryption scheme is first used to deal with the large-scale serialization in the search, and then the fully homomorphic encryption scheme is used to deal with the remaining simple operations. The depth of operations supported by the fully homomorphic scheme no longer depends on the size of the database, but only needs to support the single homomorphic encryption scheme to decrypt the circuit depth. Based on this hybrid homomorphic encryption retrieval model, the efficiency of homomorphic privacy information retrieval model can be greatly improved.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3