LayerCFL: an efficient federated learning with layer-wised clustering

Author:

Yuan Jie,Qian Rui,Yuan TingtingORCID,Sun Mingliang,Li Jirui,Li Xiaoyong

Abstract

AbstractFederated Learning (FL) suffers from the Non-IID problem in practice, which poses a challenge for efficient and accurate model training. To address this challenge, prior research has introduced clustered FL (CFL), which involves clustering clients and training them separately. Despite its potential benefits, CFL can be computationally and communicationally expensive when the data distribution is unknown beforehand. This is because CFL involves the entire neural networks of involved clients in computing the clusters during training, which can become increasingly time-consuming with large-sized models. To tackle this issue, this paper proposes an efficient CFL approach called LayerCFL that employs a Layer-wised clustering technique. In LayerCFL, clients are clustered based on a limited number of layers of neural networks that are pre-selected using statistical and experimental methods. Our experimental results demonstrate the effectiveness of LayerCFL in mitigating the impact of Non-IID data, improving the accuracy of clustering, and enhancing computational efficiency.

Funder

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3