DTA: distribution transform-based attack for query-limited scenario

Author:

Liu RenyangORCID,Zhou Wei,Jin Xin,Gao Song,Wang Yuanyu,Wang Ruxin

Abstract

AbstractIn generating adversarial examples, the conventional black-box attack methods rely on sufficient feedback from the to-be-attacked models by repeatedly querying until the attack is successful, which usually results in thousands of trials during an attack. This may be unacceptable in real applications since Machine Learning as a Service Platform (MLaaS) usually only returns the final result (i.e., hard-label) to the client and a system equipped with certain defense mechanisms could easily detect malicious queries. By contrast, a feasible way is a hard-label attack that simulates an attacked action being permitted to conduct a limited number of queries. To implement this idea, in this paper, we bypass the dependency on the to-be-attacked model and benefit from the characteristics of the distributions of adversarial examples to reformulate the attack problem in a distribution transform manner and propose a distribution transform-based attack (DTA). DTA builds a statistical mapping from the benign example to its adversarial counterparts by tackling the conditional likelihood under the hard-label black-box settings. In this way, it is no longer necessary to query the target model frequently. A well-trained DTA model can directly and efficiently generate a batch of adversarial examples for a certain input, which can be used to attack un-seen models based on the assumed transferability. Furthermore, we surprisingly find that the well-trained DTA model is not sensitive to the semantic spaces of the training dataset, meaning that the model yields acceptable attack performance on other datasets. Extensive experiments validate the effectiveness of the proposed idea and the superiority of DTA over the state-of-the-art.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference72 articles.

1. Akhtar N, Liu J, Mian A (2018) Defense against universal adversarial perturbations. In: CVPR, pp. 3389–3398. https://doi.org/10.1109/CVPR.2018.00357

2. Ardizzone L, Lüth C, Kruse J, Rother C, Köthe U (2019) Guided image generation with conditional invertible neural networks. CoRR arXiv:abs/1907.02392

3. Baluja S, Fischer I (2018) Learning to attack: adversarial transformation networks. In: AAAI, pp 2687–2695

4. Carlini N, Wagner DA (2017) Towards evaluating the robustness of neural networks. In: S &P. https://doi.org/10.1109/SP.2017.49

5. Chakraborty A, Alam M, Dey V, Chattopadhyay A, Mukhopadhyay D (2018) Adversarial attacks and defences: a survey. CoRR arXiv:abs/1810.00069

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3