Author:
Ibor Ayei E.,Oladeji Florence A.,Okunoye Olusoji B.,Ekabua Obeten O.
Abstract
AbstractThe state of the cyberspace portends uncertainty for the future Internet and its accelerated number of users. New paradigms add more concerns with big data collected through device sensors divulging large amounts of information, which can be used for targeted attacks. Though a plethora of extant approaches, models and algorithms have provided the basis for cyberattack predictions, there is the need to consider new models and algorithms, which are based on data representations other than task-specific techniques. Deep learning, which is underpinned by representation learning, has found widespread relevance in computer vision, speech recognition, natural language processing, audio recognition, and drug design. However, its non-linear information processing architecture can be adapted towards learning the different data representations of network traffic to classify benign and malicious network packets. In this paper, we model cyberattack prediction as a classification problem. Furthermore, the deep learning architecture was co-opted into a new model using rectified linear units (ReLU) as the activation function in the hidden layers of a deep feed forward neural network. Our approach achieves a greedy layer-by-layer learning process that best represents the features useful for predicting cyberattacks in a dataset of benign and malign traffic. The underlying algorithm of the model also performs feature selection, dimensionality reduction, and clustering at the initial stage, to generate a set of input vectors called hyper-features. The model is evaluated using CICIDS2017 and UNSW_NB15 datasets on a Python environment test bed. Results obtained from experimentation show that our model demonstrates superior performance over similar models.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Networks and Communications,Information Systems,Software
Reference45 articles.
1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... and Kudlur, M. (2016). Tensorflow: a system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16)(pp. 265-283)
2. Agarap AF (2018) Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375
3. Aksu D, and Aydin MA. (2018). Detecting port scan attempts with comparative analysis of deep learning and support vector machine algorithms. In 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT). IEEE, Ankara, pp. 77–80
4. Al-Qatf M, Lasheng Y, Al-Habib M, Al-Sabahi K (2018) Deep learning approach combining sparse autoencoder with SVM for network intrusion detection. IEEE Access 6:52843–52856
5. Chadza T, Kyriakopoulos KG, Lambotharan S. (2019). Contemporary Sequential Network Attacks Prediction using Hidden Markov Model. In 2019 17th International Conference on Privacy, Security and Trust (PST). Fredericton: IEEE (pp. 1-3).
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献