LSTM RNN: detecting exploit kits using redirection chain sequences

Author:

Burgess JonahORCID,O’Kane Philip,Sezer Sakir,Carlin Domhnall

Abstract

AbstractWhile consumers use the web to perform routine activities, they are under the constant threat of attack from malicious websites. Even when visiting ‘trusted’ sites, there is always a risk that site is compromised, and, hosting a malicious script. In this scenario, the injected script would typically force the victim’s browser to undergo a series of redirects before reaching an attacker-controlled domain, which, delivers the actual malware. Although these malicious redirection chains aim to frustrate detection and analysis efforts, they could be used to help identify web-based attacks. Building upon previous work, this paper presents the first known application of a Long Short-Term Memory (LSTM) network to detect Exploit Kit (EK) traffic, utilising the structure of HTTP redirects. Samples are processed as sequences, where each timestep represents a redirect and contains a unique combination of 48 features. The experiment is conducted using a ground-truth dataset of 1279 EK and 5910 benign redirection chains. Hyper-parameters are tuned via K-fold cross-validation (5f-CV), with the optimal configuration achieving an F1 score of 0.9878 against the unseen test set. Furthermore, we compare the results of isolated feature categories to assess their importance.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Reference33 articles.

1. Analysis, B (2020) Broad Analysis. https://broadanalysis.com/. Accessed 7 May 2021.

2. Brownlee, J (2017) Long Short-term Memory Networks with Python: Develop Sequence Prediction Models with Deep Learning. Machine Learning Mastery.

3. Burgess, J, Carlin D, O’Kane P, Sezer S (2020) REdiREKT: Extracting Malicious Redirections from Exploit Kit Traffic In: 2020 IEEE Conference on Communications and Network Security (CNS).. IEEE.

4. c, 0fec0de (2020) Python AnyTree Module. https://anytree.readthedocs.io/en/latest/. Accessed 7 May 2021.

5. Carlin, D, Burgess J, O’Kane P, Sezer S (2019) You could be mine (d): the rise of cryptojacking. IEEE Secur Priv 18(2):16–22.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3