1. Arpit D, Jastrzebski S, Ballas N et al. (2017) A closer look at memorization in deep networks. In: Precup D, Whye Teh Y (eds) Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 233–242. PMLR[Online]. Available: http://proceedings.mlr.press/v70/arpit17a.html
2. Balcan MF, Broder AZ, Zhang T(2007) Margin based active learning. In: Nader HB, Claudio G (eds) Learning theory, 20th annual conference on learning theory, COLT 2007, San Diego, CA, USA, June 13–15, 2007, Proceedings, volume 4539 of Lecture Notes in Computer Science, pages 35–50. Springer[Online]. Available: https://doi.org/10.1007/978-3-540-72927-3_5
3. Barni M, Kallas K, Tondi B (2019) A new backdoor attack in CNNS by training set corruption without label poisoning. In: 2019 IEEE international conference on image processing, ICIP 2019, Taipei, Taiwan, September 22-25, 2019, pages 101–105. IEEE [Online]. Available: https://doi.org/10.1109/ICIP.2019.8802997
4. Berthelot D, Carlini N, Goodfellow IJ et al (2019) Mixmatch: a holistic approach to semi-supervised learning. In: Wallach HM, Larochelle H, Beygelzimer A et al (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada, pages 5050–5060. https://proceedings.neurips.cc/paper/2019/hash/1cd138d0499a68f4bb72bee04bbec2d7-Abstract.html
5. Blum A, Mitchell TM (1998) Combining labeled and unlabeled data with co-training. In: Bartlett PL, Mansour Y (eds) Proceedings of the eleventh annual conference on computational learning theory, COLT 1998, Madison, Wisconsin, USA, July 24–26, 1998, pages 92–100. ACM. https://doi.org/10.1145/279943.279962