Curve25519 based lightweight end-to-end encryption in resource constrained autonomous 8-bit IoT devices

Author:

Ullah ShafiORCID,Zahilah Raja

Abstract

AbstractRobust encryption techniques require heavy computational capability and consume large amount of memory which are unaffordable for resource constrained IoT devices and Cyber-Physical Systems with an inclusion of general-purpose data manipulation tasks. Many encryption techniques have been introduced to address the inability of such devices, lacking in robust security provision at low cost. This article presents an encryption technique, implemented on a resource constrained IoT device (AVR ATmega2560) through utilizing fast execution and less memory consumption properties of curve25519 in a novel and efficient lightweight hash function. The hash function utilizes GMP library for multi-precision arithmetic calculations and pre-calculated curve points to devise a good cipher block using ECDH based key exchange protocols and large random prime number generator function.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Reference34 articles.

1. Altop DK, et al (2015) Towards using physiological signals as cryptographic keys in body area networks. 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), IEEE

2. Aranha DF, Dahab R, López J, Oliveira LB (2010) Efficient implementation of elliptic curve cryptography in wireless sensors. Adv Math Commun 4(2):169–187

3. Banerjee S, Patil A (2018) ECC Based Encryption Algorithm for Lightweight Cryptography. International Conference on Intelligent Systems Design and Applications, Springer

4. Bernstein DJ (2006) Curve25519: new Diffie-Hellman speed records. International Workshop on Public Key Cryptography, Springer

5. Bernstein, DJ, Lange, T: SafeCurves: choosing safe curves for elliptic-curve cryptography. 2014. https://safecurves.cr.yp.to. Accessed 1 Dec 2014.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3