Generic, efficient and isochronous Gaussian sampling over the integers

Author:

Sun Shuo,Zhou Yongbin,Ji Yunfeng,Zhang Rui,Tao Yang

Abstract

AbstractGaussian sampling over the integers is one of the fundamental building blocks of lattice-based cryptography. Among the extensively used trapdoor sampling algorithms, it is ineluctable until now. Under the influence of numerous side-channel attacks, it is still challenging to construct a Gaussian sampler that is generic, efficient, and resistant to timing attacks. In this paper, our contribution is three-fold. First, we propose a secure, efficient exponential Bernoulli sampling algorithm. It can be applied to Gaussian samplers based on rejection samplings. We apply it to FALCON, a candidate of round 3 of the NIST post-quantum cryptography standardization project, and reduce its signature generation time by 13–14%. Second, we develop an isochronous Gaussian sampler based on rejection sampling. Our Algorithm can securely sample from Gaussian distributions with different standard deviations and arbitrary centers. We apply it to PALISADE (S&P 2018), an open-source lattice-based cryptography library. During the online phase of trapdoor sampling, the running time of the G-lattice sampling algorithm is reduced by 44.12% while resisting timing attacks. Third, we improve the efficiency of the COSAC sampler (PQC 2020). The new COSAC sampler is 1.46x–1.63x faster than the original and has the lowest expected number of trials among all Gaussian samplers based on rejection samplings. But it needs a more efficient algorithm sampling from the normal distribution to improve its performance.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identity-Based Online/Offline Encryption Scheme from LWE;Information;2024-09-04

2. Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions;Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security;2023-11-15

3. A Survey on Discrete Gaussian Samplers in Lattice Based Cryptography;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3