A deep learning aided differential distinguisher improvement framework with more lightweight and universality

Author:

Liu JiaShuo,Ren JiongJiongORCID,Chen ShaoZhen

Abstract

AbstractIn CRYPTO 2019, Gohr opens up a new direction for cryptanalysis. He successfully applied deep learning to differential cryptanalysis against the NSA block cipher SPECK32/64, achieving higher accuracy than traditional differential distinguishers. Until now, one of the mainstream research directions is increasing the training sample size and utilizing different neural networks to improve the accuracy of neural distinguishers. This conversion mindset may lead to a huge number of parameters, heavy computing load, and a large number of memory in the distinguishers training process. However, in the practical application of cryptanalysis, the applicability of the attacks method in a resource-constrained environment is very important. Therefore, we focus on the cost optimization and aim to reduce network parameters for differential neural cryptanalysis.In this paper, we propose two cost-optimized neural distinguisher improvement methods from the aspect of data format and network structure, respectively. Firstly, we obtain a partial output difference neural distinguisher using only 4-bits training data format which is constructed with a new advantage bits search algorithm based on two key improvement conditions. In addition, we perform an interpretability analysis of the new neural distinguishers whose results are mainly reflected in the relationship between the neural distinguishers, truncated differential, and advantage bits. Secondly, we replace the traditional convolution with the depthwise separable convolution to reduce the training cost without affecting the accuracy as much as possible. Overall, the number of training parameters can be reduced by less than 50% by using our new network structure for training neural distinguishers. Finally, we apply the network structure to the partial output difference neural distinguishers. The combinatorial approach have led to a further reduction in the number of parameters (approximately 30% of Gohr’s distinguishers for SPECK).

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3