Threshold ring signature: generic construction and logarithmic size instantiation

Author:

Wang Huizhuo,Tao Yang,Zhang Rui

Abstract

AbstractA ring signature is a variant of normal digital signature and protects the privacy of a specific signer in the sense that a ring signature can be verified, but the signer’s identity can only be traced to a limited set. The concept was further enhanced to threshold setting to distribute signing ability among several signers. Since threshold ring signature was introduced, it was a hard problem whether one can have efficient constructions for it. In this paper, we introduce a new generic construction of threshold ring signature, named GTRS, based on canonical identification of a specific form. Our signature consists of a polynomial (represented by $$n - t + 1$$ n - t + 1 coefficients) and a single response, resulting in significantly shorter threshold ring signatures. Instantiating the generic construction with specific DL-based components, e.g. Schnorr identification and a novel vector argument of knowledge developed in this paper, we obtain GTRS-EC, which is shorter than all existing threshold ring signatures without any trusted setup.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference27 articles.

1. Aguilar Melchor C, Cayrel PL, Gaborit P (2008) A new efficient threshold ring signature scheme based on coding theory. In: Buchmann J, Ding J (eds) Post-quantum cryptography, second international workshop, PQCRYPTO 2008. Springer, pp 1–16

2. Aranha DF, Hall-Andersen M, Nitulescu A et al (2022) Count me in! Extendability for threshold ring signatures. In: Hanaoka G, Shikata J, Watanabe Y (eds) PKC 2022, part II, LNCS, vol 13178. Springer, pp 379–406

3. Attema T, Cramer R, Fehr S (2021) Compressing proofs of k-out-of-n partial knowledge. In: Malkin T, Peikert C (eds) CRYPTO 2021, part IV, LNCS, vol 12828. Springer, pp 65–91

4. Avitabile G, Botta V, Friolo D et al (2022) Efficient proofs of knowledge for threshold relations. In: Atluri V, Di Pietro R, Jensen CD et al (eds) ESORICS 2022, part III, LNCS, vol 13556. Springer, pp 42–62

5. Avitabile G, Botta V, Fiore D (2023) Extendable threshold ring signatures with enhanced anonymity. In: Boldyreva A, Kolesnikov V (eds) PKC 2023, part I, LNCS, vol 13940. Springer, pp 281–311

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3