Enhancing fairness of trading environment: discovering overlapping spammer groups with dynamic co-review graph optimization

Author:

Wang Chaoqun,Li Ning,Ji ShujuanORCID,Fang Xianwen,Wang Zhen

Abstract

AbstractWithin the thriving e-commerce landscape, some unscrupulous merchants hire spammer groups to post misleading reviews or ratings, aiming to manipulate public perception and disrupt fair market competition. This phenomenon has prompted a heightened research focus on spammer groups detection. In the e-commerce domain, current spammer group detection algorithms can be classified into three categories, i.e., Frequent Item Mining-based, graph-based, and burst-based algorithms. However, existing graph-based algorithms have limitations in that they did not adequately consider the redundant relationships within co-review graphs and neglected to detect overlapping members within spammer groups. To address these issues, we introduce an overlapping spammer group detection algorithm based on deep reinforcement learning named DRL-OSG. First, the algorithm filters out highly suspicious products and gets the set of reviewers who have reviewed these products. Secondly, taking these reviewers as nodes and their co-reviewing relationships as edges, we construct a homogeneous co-reviewing graph. Thirdly, to efficiently identify and handle the redundant relationships that are accidentally formed between ordinary users and spammer group members, we propose the Auto-Sim algorithm, which is a specifically tailored algorithm for dynamic optimization of the co-reviewing graph, allowing for adjustments to the reviewers’ relationship network within the graph. Finally, candidate spammer groups are discovered by using the Ego-Splitting overlapping clustering algorithm, allowing overlapping members to exist in these groups. Then, these groups are refined and ranked to derive the final list of spammer groups. Experimental results based on real-life datasets show that our proposed DRL-OSG algorithm performs better than the baseline algorithms in Precision.

Funder

The National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Open Research Fund of Anhui Province Engineering Laboratory for Big Data Analysis and Early Warning Technology of Coal Mine Safety

Shandong Education Quality Improvement Plan for Postgraduate (2021), the SDUST Research Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3