PosFuzz: augmenting greybox fuzzing with effective position distribution

Author:

Zou Yanyan,Zou Wei,Zhao JiaCheng,Zhong Nanyu,Zhang Yu,Shi Ji,Huo Wei

Abstract

AbstractMutation-based greybox fuzzing has been one of the most prevalent techniques for security vulnerability discovery and a great deal of research work has been proposed to improve both its efficiency and effectiveness. Mutation-based greybox fuzzing generates input cases by mutating the input seed, i.e., applying a sequence of mutation operators to randomly selected mutation positions of the seed. However, existing fruitful research work focuses on scheduling mutation operators, leaving the schedule of mutation positions as an overlooked aspect of fuzzing efficiency. This paper proposes a novel greybox fuzzing method, PosFuzz, that statistically schedules mutation positions based on their historical performance. PosFuzz makes use of a concept of effective position distribution to represent the semantics of the input and to guide the mutations. PosFuzz first utilizes Good-Turing frequency estimation to calculate an effective position distribution for each mutation operator. It then leverages two sampling methods in different mutating stages to select the positions from the distribution. We have implemented PosFuzz on top of AFL, AFLFast and MOPT, called Pos-AFL, -AFLFast and -MOPT respectively, and evaluated them on the UNIFUZZ benchmark (20 widely used open source programs) and LAVA-M dataset. The result shows that, under the same testing time budget, the Pos-AFL, -AFLFast and -MOPT outperform their counterparts in code coverage and vulnerability discovery ability. Compared with AFL, AFLFast, and MOPT, PosFuzz gets 21% more edge coverage and finds 133% more paths on average. It also triggers 275% more unique bugs on average.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3