A lightweight DDoS detection scheme under SDN context

Author:

Jia KunORCID,Liu Chaoge,Liu Qixu,Wang Junnan,Liu Jiazhi,Liu Feng

Abstract

AbstractSoftware-defined networking (SDN), a novel network paradigm, separates the control plane and data plane into different network equipment to realize the flexible control of network traffic. Its excellent programmability and global view present many new opportunities. DDoS detection under the SDN context is an important and challenging research field. Some previous works attempted to collect and analyze statistics related to flows, usually recorded in switches, to address DDoS threats. In contrast, other works applied machine learning-based solutions to identify DDoS and achieved promising results. Generally, most previous works need to periodically request flow rules or packets to obtain flow statistics or features to detect stealthy exceptions. Nevertheless, the request for flow rules is very time-consuming and CPU-consuming; moreover may congest the communication channel between the controller and the switches. Therefore, we present FORT, a lightweight DDoS detection scheme, which spreads the rule-based detection algorithm at edge switches and determines whether to start it by periodically retrieving the ports state. A time-series algorithm, ARIMA, is utilized to determine the port statistics adaptively, and an SVM algorithm is applied to detect whether a DDoS attack does occur. Representative experiments demonstrate that FORT can significantly reduce the controller load and provide a reliable detection accuracy. Referring to the false alarm rate of 1.24% in the comparison scheme, the false alarm rate of this scheme is only 0.039%, which significantly reduces the probability of false alarm. Besides, by introducing the alarm mechanism, this scheme can reduce the load of the southbound channel by more than 60% in the normal state.

Funder

National Key R &D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection and Mitigation of ICMP-based DDoS in Software Defined Networks;2024 15th International Conference on Information and Communication Systems (ICICS);2024-08-13

2. Recognition of Denial-of-Service Attacks in IoT Networks with Linear Complexity Model;Proceedings of the IEEE/ACM 16th International Conference on Utility and Cloud Computing;2023-12-04

3. Data Security Patterns for Critical Big Data Systems;2023 IEEE 6th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech);2023-11-21

4. Network intrusion detection and mitigation in SDN using deep learning models;International Journal of Information Security;2023-10-29

5. SDN as a defence mechanism: a comprehensive survey;International Journal of Information Security;2023-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3