Abstract
AbstractCode similarity analysis has become more popular due to its significant applicantions, including vulnerability detection, malware detection, and patch analysis. Since the source code of the software is difficult to obtain under most circumstances, binary-level code similarity analysis (BCSA) has been paid much attention to. In recent years, many BCSA studies incorporating AI techniques focus on deriving semantic information from binary functions with code representations such as assembly code, intermediate representations, and control flow graphs to measure the similarity. However, due to the impacts of different compilers, architectures, and obfuscations, binaries compiled from the same source code may vary considerably, which becomes the major obstacle for these works to obtain robust features. In this paper, we propose a solution, named UPPC (Unleashing the Power of Pseudo-code), which leverages the pseudo-code of binary function as input, to address the binary code similarity analysis challenge, since pseudo-code has higher abstraction and is platform-independent compared to binary instructions. UPPC selectively inlines the functions to capture the full function semantics across different compiler optimization levels and uses a deep pyramidal convolutional neural network to obtain the semantic embedding of the function. We evaluated UPPC on a data set containing vulnerabilities and a data set including different architectures (X86, ARM), different optimization options (O0-O3), different compilers (GCC, Clang), and four obfuscation strategies. The experimental results show that the accuracy of UPPC in function search is 33.2% higher than that of existing methods.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Networks and Communications,Information Systems,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Continuous Authentication in a UAVs Swarm;2023 15th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT);2023-10-30
2. Techniques for Accelerating Algebraic Operations in Agent-based Information Security Systems;2023 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF);2023-05-29
3. SimCoDe-NET: Similarity Detection in Binary Code using Deep Learning Network;International Journal of Electrical and Electronics Research;2023-03-20