SIFT: Sifting file types—application of explainable artificial intelligence in cyber forensics

Author:

Alam ShahidORCID,Demir Alper Kamil

Abstract

AbstractArtificial Intelligence (AI) is being applied to improve the efficiency of software systems used in various domains, especially in the health and forensic sciences. Explainable AI (XAI) is one of the fields of AI that interprets and explains the methods used in AI. One of the techniques used in XAI to provide such interpretations is by computing the relevance of the input features to the output of an AI model. File fragment classification is one of the vital issues of file carving in Cyber Forensics (CF) and becomes challenging when the filesystem metadata is missing. Other major challenges it faces are: proliferation of file formats, file embeddings, automation, We leverage and utilize interpretations provided by XAI to optimize the classification of file fragments and propose a novel sifting approach, named SIFT (Sifting File Types). SIFT employs TF-IDF to assign weight to a byte (feature), which is used to select features from a file fragment. Threshold-based LIME and SHAP (the two XAI techniques) feature relevance values are computed for the selected features to optimize file fragment classification. To improve multinomial classification, a Multilayer Perceptron model is developed and optimized with five hidden layers, each layer with $$i \times n$$ i × n neurons, where i = the layer number and n = the total number of classes in the dataset. When tested with 47,482 samples of 20 file types (classes), SIFT achieves a detection rate of 82.1% and outperforms the other state-of-the-art techniques by at least 10%. To the best of our knowledge, this is the first effort of applying XAI in CF for optimizing file fragment classification.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3