An efficient permutation approach for SbPN-based symmetric block ciphers

Author:

Nazish Mir,Banday M. TariqORCID,Syed Insha,Banday Sheena

Abstract

AbstractIt is challenging to devise lightweight cryptographic primitives efficient in both hardware and software that can provide an optimum level of security to diverse Internet of Things applications running on low-end constrained devices. Therefore, an efficient hardware design approach that requires some specific hardware resource may not be efficient if implemented in software. Substitution bit Permutation Network based ciphers such as PRESENT and GIFT are efficient, lightweight cryptographic hardware design approaches. These ciphers introduce confusion and diffusion by employing a 4 × 4 static substitution box and bit permutations. The bit-wise permutation is realised by simple rerouting, which is most cost-effective to implement in hardware, resulting in negligible power consumption. However, this method is highly resource-consuming in software, particularly for large block-sized ciphers, with each single-bit permutation requiring multiple sub-operations. This paper proposes a novel software-based design approach for permutation operation in Substitution bit Permutation Network based ciphers using a bit-banding feature. The conventional permutation using bit rotation and the proposed approach have been implemented, analysed and compared for GIFT and PRESENT ciphers on ARM Cortex-M3-based LPC1768 development platform with KEIL MDK used as an Integrated Development Environment. The real-time performance comparison between conventional and the proposed approaches in terms of memory (RAM/ROM) footprint, power, energy and execution time has been carried out using ULINKpro and ULINKplus debug adapters for various code and speed optimisation scenarios. The proposed approach substantially reduces execution time, energy and power consumption for both PRESENT and GIFT ciphers, thus demonstrating the efficiency of the proposed method for Substitution bit Permutation Network based symmetric block ciphers.

Funder

University Grants Commission

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Lightweight Encryption for Image Security using One-Dimensional Chaotic Maps;2023 Third International Conference on Smart Technologies, Communication and Robotics (STCR);2023-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3