A flexible approach for cyber threat hunting based on kernel audit records

Author:

Yang Fengyu,Han Yanni,Ding Ying,Tan Qian,Xu Zhen

Abstract

AbstractHunting the advanced threats hidden in the enterprise networks has always been a complex and difficult task. Due to the variety of attacking means, it is difficult for traditional security systems to detect threats. Most existing methods analyze log records, but the amount of log records generated every day is very large. How to find the information related to the attack events quickly and effectively from massive data streams is an important problem. Considering that the knowledge graph can be used for automatic relation calculation and complex relation analysis, and can get relatively fast feedback, our work proposes to construct the knowledge graph based on kernel audit records, which fully considers the global correlation among entities observed in audit logs. We design the construction and application process of knowledge graph, which can be applied to actual threat hunting activities. Then we explore different ways to use the constructed knowledge graph for hunting actual threats in detail. Finally, we implement a LAN-wide hunting system which is convenient and flexible for security analysts. Evaluations based on the adversarial engagement designed by DARPA prove that our platform can effectively hunt sophisticated threats, quickly restore the attack path or assess the impact of attack.

Funder

Industrial Internet Innovation and Development Project

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Reference43 articles.

1. Belhajjame K (2013) PROV-DM: the PROV data model. https://www.w3.org/TR/prov-dm/

2. Corporation TM (2015) APT&CK. https://attack.mitre.org

3. DavidJBianco: the threathuting project (2019). https://www.threathunting.net

4. Gao P, Xiao X, Li D, Li Z, Jee K, Wu Z, Kim CH, Kulkarni SR, Mittal P (2018) {SAQL}: a stream-based query system for real-time abnormal system behavior detection. In: 27th {USENIX} security symposium ({USENIX} security 18), pp 639–656

5. Gao P, Xiao X, Li Z, Xu F, Kulkarni SR, Mittal P (2018) {AIQL}: enabling efficient attack investigation from system monitoring data. In: {USENIX} annual technical conference ({USENIX}{ATC} 18), pp 113–126

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knowledge Graphs and Semantic Web Tools in Cyber Threat Intelligence: A Systematic Literature Review;Journal of Cybersecurity and Privacy;2024-08-01

2. From data to insights: the application and challenges of knowledge graphs in intelligent audit;Journal of Cloud Computing;2024-05-29

3. Blockchain-Based Secure Transactions;Advances in Logistics, Operations, and Management Science;2023-04-21

4. A Survey on Threat Hunting in Enterprise Networks;IEEE Communications Surveys & Tutorials;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3