Evicting and filling attack for linking multiple network addresses of Bitcoin nodes

Author:

Yang Huashuang,Shi Jinqiao,Gao YueORCID,Wang Xuebin,Sun Yanwei,Shi Ruisheng,Wang Dongbin

Abstract

AbstractBitcoin is a decentralized P2P cryptocurrency. It supports users to use pseudonyms instead of network addresses to send and receive transactions at the data layer, hiding users’ real network identities. Traditional transaction tracing attack cuts through the network layer to directly associate each transaction with the network address that issued it, thus revealing the sender’s network identity. But this attack can be mitigated by Bitcoin’s network layer privacy protections. Since Bitcoin protects the unlinkability of Bitcoin addresses and there may be a many-to-one relationship between addresses and nodes, transactions sent from the same node via different addresses are seen as coming from different nodes because attackers can only use addresses as node identifiers. In this paper, we proposed the evicting and filling attack to expose the correlations between addresses and cluster transactions sent from different addresses of the same node. The attack exploited the unisolation of Bitcoin’s incoming connection processing mechanism. In particular, an attacker can utilize the shared connection pool and deterministic connection eviction strategy to infer the correlation between incoming and evicting connections, as well as the correlation between releasing and filling connections. Based on inferred results, different addresses of the same node with these connections can be linked together, whether they are of the same or different network types. We designed a multi-step attack procedure, and set reasonable attack parameters through analyzing the factors that affect the attack efficiency and accuracy. We mounted this attack on both our self-run nodes and multi-address nodes in real Bitcoin network, achieving an average accuracy of 96.9% and 82%, respectively. Furthermore, we found that the attack is also applicable to Zcash, Litecoin, Dogecoin, Bitcoin Cash, and Dash. We analyzed the cost of network-wide attacks, the application scenario, and proposed countermeasures of this attack.

Funder

Key Research and Development Program for Guangdong Province

Beijing Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3