B2SMatcher: fine-Grained version identification of open-Source software in binary files

Author:

Ban Gu,Xu Lili,Xiao Yang,Li Xinhua,Yuan Zimu,Huo Wei

Abstract

AbstractCodes of Open Source Software (OSS) are widely reused during software development nowadays. However, reusing some specific versions of OSS introduces 1-day vulnerabilities of which details are publicly available, which may be exploited and lead to serious security issues. Existing state-of-the-art OSS reuse detection work can not identify the specific versions of reused OSS well. The features they selected are not distinguishable enough for version detection and the matching scores are only based on similarity.This paper presents B2SMatcher, a fine-grained version identification tool for OSS in commercial off-the-shelf (COTS) software. We first discuss five kinds of version-sensitive code features that are trackable in both binary and source code. We categorize these features into program-level features and function-level features and propose a two-stage version identification approach based on the two levels of code features. B2SMatcher also identifies different types of OSS version reuse based on matching scores and matched feature instances. In order to extract source code features as accurately as possible, B2SMatcher innovatively uses machine learning methods to obtain the source files involved in the compilation and uses function abstraction and normalization methods to eliminate the comparison costs on redundant functions across versions. We have evaluated B2SMatcher using 6351 candidate OSS versions and 585 binaries. The result shows that B2SMatcher achieves a high precision up to 89.2% and outperforms state-of-the-art tools. Finally, we show how B2SMatcher can be used to evaluate real-world software and find some security risks in practice.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-Inlining Binary Function Similarity Detection;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

2. FSmell: Recognizing Inline Function in Binary Code;Lecture Notes in Computer Science;2024

3. An Empirical Study of Function-Irrelevant Patches Based on Internet Software;IEEE Communications Magazine;2024

4. SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries;Dependable Software Engineering. Theories, Tools, and Applications;2023-12-15

5. Searching Open-Source Vulnerability Function Based on Software Modularization;Applied Sciences;2023-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3