Protective effect of magnesium on renal function in STZ-induced diabetic rats

Author:

Parvizi Mohammad Reza,Parviz Mohsen,Tavangar Seyed Mohammad,Soltani Nepton,Kadkhodaee Mehri,Seifi Behjat,Azizi Yaser,Keshavarz Mansoor

Abstract

Abstract Background Diabetic nephropathy is a serious complication of T1D (type one diabetes mellitus). Persistent hyperglycemia and subsequent hypomagnesemia is believed to develop kidney damage by activation of oxidative stress. We conducted this study to investigate the renoprotective effect of magnesium sulfate (MgSO4) on renal histopathology and oxidative stress in diabetic rats. Methods The study included 70 male rats. The animals were divided into seven groups: control (CRL), control receiving MgSO4 (CRL + Mg1 & CRL + Mg8), diabetic (DM1 & DM8) and diabetic receiving MgSO4 (DM + Mg1 & DM + Mg8). Rats were given 20 mg/kg (i.p) Streptozocin (STZ) for 5 consecutive days in (MLD) multiple low doses to induce T1D. At day 10 treatment groups were received MgSO4 (10 g/l) in drinking water, for 1 or 8 weeks. The blood glucose, BUN and creatinine levels were measured. Renal tissue levels of malondialdehyde (MDA) were measured by thiobarbituric acid (TBA) method to evaluate the oxidative stress. Renal histopathology was done using H & E staining method. Results Treatment with MgSO4 significantly decreased the blood glucose in DM + Mg1 and DM + Mg8 groups as compared with DM1 and DM8. Magnesium treatment also decreased serum BUN and tissue level of MDA significantly in both short and long term treatment. The body weight loss and kidney weight to body weight ratio was improved by MgSO4. Histological results showed there were no differences between DM and DM + Mg groups. Conclusion Our findings showed that diabetic nephropathy is associated with high blood glucose level and oxidative stress (significant increase in MDA level). The renal dysfunction and oxidative stress can be improved by magnesium sulfate administration. It is suggested that protection against development of diabetic nephropathy by MgSO4 treatment involves changes in the blood glucose and oxidative stress.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference59 articles.

1. Lu HJ, Tzeng TF, Hsu JC, Kuo SH, Chang CH, Huang SY, Chang FY, Wu MC, Liu IM: An aqueous-ethanol extract of liriope spicata var. prolifera ameliorates diabetic nephropathy through suppression of renal inflammation. Evid Based Complement Alternat Med 2013, 2013: 201643. Epub 2013/09/13

2. Schena FP, Gesualdo L: Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 2005, 16(Suppl 1):S30-S33. Epub 2005/06/07 10.1681/ASN.2004110970

3. Ribeiro MC, Avila DS, Barbosa NB, Meinerz DF, Waczuk EP, Hassan W, Rocha JB: Hydrochlorothiazide and high-fat diets reduce plasma magnesium levels and increase hepatic oxidative stress in rats. Magnes Res 2013, 26(1):32–40. Epub 2013/05/10

4. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T: Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 2005, 28(1):164–176. Epub 2004/12/24 10.2337/diacare.28.1.164

5. Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK, Shankar V: Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci 2013, 5(3):213–219. Epub 2013/04/30 10.4103/1947-2714.109193

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3