Author:
Parvizi Mohammad Reza,Parviz Mohsen,Tavangar Seyed Mohammad,Soltani Nepton,Kadkhodaee Mehri,Seifi Behjat,Azizi Yaser,Keshavarz Mansoor
Abstract
Abstract
Background
Diabetic nephropathy is a serious complication of T1D (type one diabetes mellitus). Persistent hyperglycemia and subsequent hypomagnesemia is believed to develop kidney damage by activation of oxidative stress. We conducted this study to investigate the renoprotective effect of magnesium sulfate (MgSO4) on renal histopathology and oxidative stress in diabetic rats.
Methods
The study included 70 male rats. The animals were divided into seven groups: control (CRL), control receiving MgSO4 (CRL + Mg1 & CRL + Mg8), diabetic (DM1 & DM8) and diabetic receiving MgSO4 (DM + Mg1 & DM + Mg8). Rats were given 20 mg/kg (i.p) Streptozocin (STZ) for 5 consecutive days in (MLD) multiple low doses to induce T1D. At day 10 treatment groups were received MgSO4 (10 g/l) in drinking water, for 1 or 8 weeks. The blood glucose, BUN and creatinine levels were measured. Renal tissue levels of malondialdehyde (MDA) were measured by thiobarbituric acid (TBA) method to evaluate the oxidative stress. Renal histopathology was done using H & E staining method.
Results
Treatment with MgSO4 significantly decreased the blood glucose in DM + Mg1 and DM + Mg8 groups as compared with DM1 and DM8. Magnesium treatment also decreased serum BUN and tissue level of MDA significantly in both short and long term treatment. The body weight loss and kidney weight to body weight ratio was improved by MgSO4. Histological results showed there were no differences between DM and DM + Mg groups.
Conclusion
Our findings showed that diabetic nephropathy is associated with high blood glucose level and oxidative stress (significant increase in MDA level). The renal dysfunction and oxidative stress can be improved by magnesium sulfate administration. It is suggested that protection against development of diabetic nephropathy by MgSO4 treatment involves changes in the blood glucose and oxidative stress.
Publisher
Springer Science and Business Media LLC
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Reference59 articles.
1. Lu HJ, Tzeng TF, Hsu JC, Kuo SH, Chang CH, Huang SY, Chang FY, Wu MC, Liu IM: An aqueous-ethanol extract of liriope spicata var. prolifera ameliorates diabetic nephropathy through suppression of renal inflammation. Evid Based Complement Alternat Med 2013, 2013: 201643. Epub 2013/09/13
2. Schena FP, Gesualdo L: Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 2005, 16(Suppl 1):S30-S33. Epub 2005/06/07 10.1681/ASN.2004110970
3. Ribeiro MC, Avila DS, Barbosa NB, Meinerz DF, Waczuk EP, Hassan W, Rocha JB: Hydrochlorothiazide and high-fat diets reduce plasma magnesium levels and increase hepatic oxidative stress in rats. Magnes Res 2013, 26(1):32–40. Epub 2013/05/10
4. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T: Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 2005, 28(1):164–176. Epub 2004/12/24 10.2337/diacare.28.1.164
5. Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK, Shankar V: Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci 2013, 5(3):213–219. Epub 2013/04/30 10.4103/1947-2714.109193
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献