Up-regulation of endothelin type B receptors in the human internal mammary artery in culture is dependent on protein kinase C and mitogen-activated kinase signaling pathways

Author:

Nilsson David,Gustafsson Lotta,Wackenfors Angelica,Gesslein Bodil,Edvinsson Lars,Paulsson Per,Ingemansson Richard,Malmsjö Malin

Abstract

Abstract Background Up-regulation of vascular endothelin type B (ETB) receptors is implicated in the pathogenesis of cardiovascular disease. Culture of intact arteries has been shown to induce similar receptor alterations and has therefore been suggested as a suitable method for, ex vivo, in detail delineation of the regulation of endothelin receptors. We hypothesize that mitogen-activated kinases (MAPK) and protein kinase C (PKC) are involved in the regulation of endothelin ETB receptors in human internal mammary arteries. Methods Human internal mammary arteries were obtained during coronary artery bypass graft surgery and were studied before and after 24 hours of organ culture, using in vitro pharmacology, real time PCR and Western blot techniques. Sarafotoxin 6c and endothelin-1 were used to examine the endothelin ETA and ETB receptor effects, respectively. The involvement of PKC and MAPK in the endothelin receptor regulation was examined by culture in the presence of antagonists. Results The endohtelin-1-induced contraction (after endothelin ETB receptor desensitization) and the endothelin ETA receptor mRNA expression levels were not altered by culture. The sarafotoxin 6c contraction, endothelin ETB receptor protein and mRNA expression levels were increased after organ culture. This increase was antagonized by; (1) PKC inhibitors (10 μM bisindolylmaleimide I and 10 μM Ro-32-0432), and (2) inhibitors of the p38, extracellular signal related kinases 1 and 2 (ERK1/2) and C-jun terminal kinase (JNK) MAPK pathways (10 μM SB203580, 10 μM PD98059 and 10 μM SP600125, respectively). Conclusion In conclusion, PKC and MAPK seem to be involved in the up-regulation of endothelin ETB receptor expression in human internal mammary arteries. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the development of vascular endothelin ETB receptor changes in cardiovascular disease.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3