Author:
Karjalainen Jouko,Tikkanen Heikki,Hernelahti Miika,Kujala Urho M
Abstract
Abstract
Background
Skeletal muscle consists of type-I (slow-twitch) and type-II (fast-twitch) fibers, with proportions highly variable between individuals and mostly determined by genetic factors. Cross-sectional studies have associated low percentage of type-I fibers (type-I%) with many cardiovascular risk factors.
Methods
We investigated whether baseline type-I% predicts left ventricular (LV) structure and function at 19-year follow-up, and if so, which are the strongest mediating factors. At baseline in 1984 muscle fiber-type distribution (by actomyosin ATPase staining) was studied in 63 healthy men (aged 32–58 years). The follow-up in 2003 included echocardiography, measurement of obesity related variables, physical activity and blood pressure.
Results
In the 40 men not using cardiovascular drugs at follow-up, low type-I% predicted higher heart rate, blood pressure, and LV fractional shortening suggesting increased sympathetic tone. Low type-I% predicted smaller LV chamber diameters (P ≤ 0.009) and greater relative wall thickness (P = 0.034) without increase in LV mass (concentric remodeling). This was explained by the association of type-I% with obesity related variables. Type-I% was an independent predictor of follow-up body fat percentage, waist/hip ratio, weight gain in adulthood, and physical activity (in all P ≤ 0.001). After including these risk factors in the regression models, weight gain was the strongest predictor of LV geometry explaining 64% of the variation in LV end-diastolic diameter, 72% in end-systolic diameter, and 53% in relative wall thickness.
Conclusion
Low type-I% predicts obesity and weight gain especially in the mid-abdomen, and consequently unfavourable LV geometry indicating increased cardiovascular risk.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine
Reference29 articles.
1. Saltin B, Gollnick PD: Skeletal muscle adaptability, significance for metabolism and performance. Handbook of Physiology. Edited by: Peachey LD. 1983, Baltimore, United States: Williams and Wilkins, 555-631.
2. Simoneau JA, Bouchard C: Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J. 1995, 9: 1091-1095.
3. Ingjer F: Effects of endurance training on muscle fibre ATP-ase activity, capillary supply and mitochondrial content in man. J Physiol. 1979, 294: 419-432.
4. Spangenburg EE, Booth FW: Molecular regulation of individual skeletal muscle fibre types. Acta Physiol Scand. 2003, 178: 413-424. 10.1046/j.1365-201X.2003.01158.x.
5. Costill DL, Daniels J, Evans W, Finh W, Krahenbuhl G, Saltin B: Skeletal muscle enzymes and fibre composition in male and female track athletes. J Appl Physiol. 1976, 90: 149-154.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献