Signal-averaged P wave analysis for delineation of interatrial conduction – Further validation of the method

Author:

Holmqvist Fredrik,Platonov Pyotr G,Havmöller Rasmus,Carlson Jonas

Abstract

Abstract Background The study was designed to investigate the effect of different measuring methodologies on the estimation of P wave duration. The recording length required to ensure reproducibility in unfiltered, signal-averaged P wave analysis was also investigated. An algorithm for automated classification was designed and its reproducibility of manual P wave morphology classification investigated. Methods Twelve-lead ECG recordings (1 kHz sampling frequency, 0.625 μV resolution) from 131 healthy subjects were used. Orthogonal leads were derived using the inverse Dower transform. Magnification (100 times), baseline filtering (0.5 Hz high-pass and 50 Hz bandstop filters), signal averaging (10 seconds) and bandpass filtering (40–250 Hz) were used to investigate the effect of methodology on the estimated P wave duration. Unfiltered, signal averaged P wave analysis was performed to determine the required recording length (6 minutes to 10 s) and the reproducibility of the P wave morphology classification procedure. Manual classification was carried out by two experts on two separate occasions each. The performance of the automated classification algorithm was evaluated using the joint decision of the two experts (i.e., the consensus of the two experts). Results The estimate of the P wave duration increased in each step as a result of magnification, baseline filtering and averaging (100 ± 18 vs. 131 ± 12 ms; P < 0.0001). The estimate of the duration of the bandpass-filtered P wave was dependent on the noise cut-off value: 119 ± 15 ms (0.2 μV), 138 ± 13 ms (0.1 μV) and 143 ± 18 ms (0.05 μV). (P = 0.01 for all comparisons). The mean errors associated with the P wave morphology parameters were comparable in all segments analysed regardless of recording length (95% limits of agreement within 0 ± 20% (mean ± SD)). The results of the 6-min analyses were comparable to those obtained at the other recording lengths (6 min to 10 s). The intra-rater classification reproducibility was 96%, while the interrater reproducibility was 94%. The automated classification algorithm agreed with the manual classification in 90% of the cases. Conclusion The methodology used has profound effects on the estimation of P wave duration, and the method used must therefore be validated before any inferences can be made about P wave duration. This has implications in the interpretation of multiple studies where P wave duration is assessed, and conclusions with respect to normal values are drawn. P wave morphology and duration assessed using unfiltered, signal-averaged P wave analysis have high reproducibility, which is unaffected by the length of the recording. In the present study, the performance of the proposed automated classification algorithm, providing total reproducibility, showed excellent agreement with manually defined P wave morphologies.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3