Author:
Lei Anping,Chen Huan,Shen Guoming,Hu Zhangli,Chen Lei,Wang Jiangxin
Abstract
Abstract
Background
Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation.
Results
We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP), 3-ketoacyl-ACP-synthase (KAS), and acyl-ACP thioesterase (FATA) gene expression had significant correlations with monounsaturated FA (MUFA) synthesis and polyunsaturated FA (PUFA) synthesis.
Conclusions
We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference43 articles.
1. BP statistical review of world energy 2010[http://www.bp.com/liveassets/bp_internet/globalbp/]
2. Vicente G, Martínez M, Aracil J: Optimization of integrated biodiesel production. Part I. A study of the biodiesel purity and yield. Bioresour Technol 2007, 98: 1724-1733.
3. Srivastava A, Prasad R: Triglycerides-based diesel fuels. Renewable Sustainable Energy Rev 2000, 4: 111-133. 10.1016/S1364-0321(99)00013-1
4. Williams PJ: Biofuel: microalgae cut the social and ecological costs. Nature 2007, 450: 478.
5. Li Y, Horsman M, Wu N, Lan CQ: Dubois-Calero N: Biofuels from microalgae. Biotechnol Progr 2008, 24: 815-820.
Cited by
172 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献