The development and use of an ELISA-based method to follow the distribution of cellulase monocomponents during the hydrolysis of pretreated corn stover

Author:

Pribowo Amadeus Y,Hu Jinguang,Arantes Valdeir,Saddler Jack N

Abstract

Abstract Background It is widely recognised that fast, effective hydrolysis of pretreated lignocellulosic substrates requires the synergistic action of multiple types of hydrolytic and some non-hydrolytic proteins. However, due to the complexity of the enzyme mixture, the enzymes interaction with and interference from the substrate and a lack of specific methods to follow the distribution of individual enzymes during hydrolysis, most of enzyme-substrate interaction studies have used purified enzymes and pure cellulose model substrates. As the enzymes present in a typical “cellulase mixture” need to work cooperatively to achieve effective hydrolysis, the action of one enzyme is likely to influence the behaviour of others. The action of the enzymes will be further influenced by the nature of the lignocellulosic substrate. Therefore, it would be beneficial if a method could be developed that allowed us to follow some of the individual enzymes present in a cellulase mixture during hydrolysis of more commercially realistic biomass substrates. Results A high throughput immunoassay that could quantitatively and specifically follow individual cellulase enzymes during hydrolysis was developed. Using monoclonal and polyclonal antibodies (MAb and PAb, respectively), a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) was developed to specifically quantify cellulase enzymes from Trichoderma reesei: cellobiohydrolase I (Cel7A), cellobiohydrolase II (Cel6A), and endoglucanase I (Cel7B). The interference from substrate materials present in lignocellulosic supernatants could be minimized by dilution. Conclusion A double-antibody sandwich ELISA was able to detect and quantify individual enzymes when present in cellulase mixtures. The assay was sensitive over a range of relatively low enzyme concentration (0 – 1 μg/ml), provided the enzymes were first pH adjusted and heat treated to increase their antigenicity. The immunoassay was employed to quantitatively monitor the adsorption of cellulase monocomponents, Cel7A, Cel6A, and Cel7B, that were present in both Celluclast and Accellerase 1000, during the hydrolysis of steam-pretreated corn stover (SPCS). All three enzymes exhibited different individual adsorption profiles. The specific and quantitative adsorption profiles observed with the ELISA method were in agreement with earlier work where more labour intensive enzyme assay techniques were used.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3