Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX™, and ionic liquid pretreatments

Author:

Gao Xiadi,Kumar Rajeev,Singh Seema,Simmons Blake A,Balan Venkatesh,Dale Bruce E,Wyman Charles E

Abstract

Abstract Background Pretreatment is essential to realize high product yields from biological conversion of naturally recalcitrant cellulosic biomass, with thermochemical pretreatments often favored for cost and performance. In this study, enzymatic digestion of solids from dilute sulfuric acid (DA), ammonia fiber expansion (AFEX™), and ionic liquid (IL) thermochemical pretreatments of corn stover were followed over time for the same range of total enzyme protein loadings to provide comparative data on glucose and xylose yields of monomers and oligomers from the pretreated solids. The composition of pretreated solids and enzyme adsorption on each substrate were also measured to determine. The extent glucose release could be related to these features. Results Corn stover solids from pretreatment by DA, AFEX, and IL were enzymatically digested over a range of low to moderate loadings of commercial cellulase, xylanase, and pectinase enzyme mixtures, the proportions of which had been previously optimized for each pretreatment. Avicel® cellulose, regenerated amorphous cellulose (RAC), and beechwood xylan were also subjected to enzymatic hydrolysis as controls. Yields of glucose and xylose and their oligomers were followed for times up to 120 hours, and enzyme adsorption was measured. IL pretreated corn stover displayed the highest initial glucose yields at all enzyme loadings and the highest final yield for a low enzyme loading of 3 mg protein/g glucan in the raw material. However, increasing the enzyme loading to 12 mg/g glucan or more resulted in DA pretreated corn stover attaining the highest longer-term glucose yields. Hydrolyzate from AFEX pretreated corn stover had the highest proportion of xylooligomers, while IL produced the most glucooligomers. However, the amounts of both oligomers dropped with increasing enzyme loadings and hydrolysis times. IL pretreated corn stover had the highest enzyme adsorption capacity. Conclusions Initial hydrolysis yields were highest for substrates with greater lignin removal, a greater degree of change in cellulose crystallinity, and high enzyme accessibility. Final glucose yields could not be clearly related to concentrations of xylooligomers released from xylan during hydrolysis. Overall, none of these factors could completely account for differences in enzymatic digestion performance of solids produced by AFEX, DA, and IL pretreatments.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3