Author:
Littlewood Jade,Wang Lei,Turnbull Colin,Murphy Richard J
Abstract
Abstract
Background
Bamboo is potentially an interesting feedstock for advanced bioethanol production in China due to its natural abundance, rapid growth, perennial nature and low management requirements. Liquid hot water (LHW) pretreatment was selected as a promising technology to enhance sugar release from bamboo lignocellulose whilst keeping economic and environmental costs to a minimum. The present research was conducted to assess: 1) by how much LHW pretreatment can enhance sugar yields in bamboo, and 2) whether this process has the potential to be economically feasible for biofuel use at the commercial scale. Pretreatments were performed at temperatures of 170-190°C for 10–30 minutes, followed by enzymatic saccharification with a commercial enzyme cocktail at various loadings. These data were then used as inputs to a techno-economic model using AspenPlus™ to determine the production cost of bioethanol from bamboo in China.
Results
At the selected LHW pretreatment of 190°C for 10 minutes, 69% of the initial sugars were released under a standardised enzyme loading; this varied between 59-76% when 10–140 FPU/g glucan of commercial enzyme Cellic CTec2 was applied. Although the lowest enzyme loading yielded the least amount of bioethanol, the techno-economic evaluation revealed it to be the most economically viable scenario with a production cost of $0.484 per litre (with tax exemption and a $0.16/litre subsidy). The supply-chain analysis demonstrated that bioethanol could be economically competitive with petrol at the pump at enzyme loadings up to 60 FPU/g glucan. However, in a prospective scenario with reduced government support, this enzyme loading threshold would be reduced to 30 FPU/g glucan.
Conclusions
Bioethanol from bamboo is shown to be both technically and economically feasible, as well as competitive with petrol in China. Alternative approaches to reduce bioethanol production costs are still needed however, to ensure its competitiveness in a possible future scenario where neither tax exemptions nor subsidies are granted to producers. These measures may include improving sugar release with more effective pretreatments and reduced enzyme usage, accessing low cost bamboo feedstock or selecting feedstocks with higher/more accessible cellulose.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference70 articles.
1. IEA: Technology Roadmap - Biofuels for Transport. Edited by: IEA Renewable Energy Division. 2011, France: International Energy Agency, 616-
2. Olivier JGJ, Janssens-Maenhout G, Peters JAHW: Trends in global CO2 emissions; 2012 report. 2012, The Hague: PBL Netherlands Environmental Assessment Agency European Commission Joint Research Centre, 40-
3. Li S, Chan-Halbrendt C: Ethanol production in (the) People’s Republic of China: potential and technologies. Appl Energy. 2009, 86: S162-S169.
4. Qiu H, Huang J, Yang J, Rozelle S, Zhang Y, Zhang Y, Zhang Y: Bioethanol development in China and the potential impacts on its agricultural economy. Appl Energy. 2010, 87: 76-83. 10.1016/j.apenergy.2009.07.015.
5. Fang X, Shen Y, Zhao J, Bao X, Qu Y: Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol. 2010, 101: 4814-4819. 10.1016/j.biortech.2009.11.050.
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献