Author:
Moraïs Sarah,Barak Yoav,Lamed Raphael,Wilson David B,Xu Qi,Himmel Michael E,Bayer Edward A
Abstract
Abstract
Background
Microorganisms employ a multiplicity of enzymes to efficiently degrade the composite structure of plant cell wall cellulosic polysaccharides. These remarkable enzyme systems include glycoside hydrolases (cellulases, hemicellulases), polysaccharide lyases, and the carbohydrate esterases. To accomplish this challenging task, several strategies are commonly observed either separately or in combination. These include free enzyme systems, multifunctional enzymes, and multi-enzyme self-assembled designer cellulosome complexes.
Results
In order to compare these different paradigms, we employed a synthetic biology approach to convert two different cellulases from the free enzymatic system of the well-studied bacterium, Thermobifida fusca, into bifunctional enzymes with different modular architectures. We then examined their performance compared to those of the combined parental free-enzyme and equivalent designer-cellulosome systems. The results showed that the cellulolytic activity displayed by the different architectures of the bifunctional enzymes was somewhat inferior to that of the wild-type free enzyme system.
Conclusions
The activity exhibited by the designer cellulosome system was equal or superior to that of the free system, presumably reflecting the combined proximity of the enzymes and high flexibility of the designer cellulosome components, thus enabling efficient enzymatic activity of the catalytic modules.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference50 articles.
1. Himmel M, Xu Q, Luo Y, Ding S, Lamed R, Bayer E: Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 2010, 1: 323-341.
2. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The carbohydrate-active enZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009, 37: D233-D238.
3. Lamed R, Setter E, Bayer EA: Characterization of a cellulose-binding, cellulase-containing complex in clostridium thermocellum . J Bacteriol 1983, 156: 828-836.
4. Lamed R, Setter E, Kenig R, Bayer EA: The cellulosome — a discrete cell surface organelle of clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 1983, 13: 163-181.
5. Bayer EA, Kenig R, Lamed R: Adherence of clostridium thermocellum to cellulose. J Bacteriol 1983, 156: 818-827.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献