Author:
Shi Yan,Chai Liyuan,Tang Chongjian,Yang Zhihui,Zhang Huan,Chen Runhua,Chen Yuehui,Zheng Yu
Abstract
Abstract
Background
Lignin materials are abundant and among the most important potential sources for biofuel production. Development of an efficient lignin degradation process has considerable potential for the production of a variety of chemicals, including bioethanol. However, lignin degradation using current methods is inefficient. Given their immense environmental adaptability and biochemical versatility, bacterial could be used as a valuable tool for the rapid degradation of lignin. Kraft lignin (KL) is a polymer by-product of the pulp and paper industry resulting from alkaline sulfide treatment of lignocellulose, and it has been widely used for lignin-related studies.
Results
Beta-proteobacterium Cupriavidus basilensis B-8 isolated from erosive bamboo slips displayed substantial KL degradation capability. With initial concentrations of 0.5–6 g L-1, at least 31.3% KL could be degraded in 7 days. The maximum degradation rate was 44.4% at the initial concentration of 2 g L-1. The optimum pH and temperature for KL degradation were 7.0 and 30°C, respectively. Manganese peroxidase (MnP) and laccase (Lac) demonstrated their greatest level of activity, 1685.3 U L-1 and 815.6 U L-1, at the third and fourth days, respectively. Many small molecule intermediates were formed during the process of KL degradation, as determined using GC-MS analysis. In order to perform metabolic reconstruction of lignin degradation in this bacterium, a draft genome sequence for C. basilensis B-8 was generated. Genomic analysis focused on the catabolic potential of this bacterium against several lignin-derived compounds. These analyses together with sequence comparisons predicted the existence of three major metabolic pathways: β-ketoadipate, phenol degradation, and gentisate pathways.
Conclusion
These results confirmed the capability of C. basilensis B-8 to promote KL degradation. Whole genomic sequencing and systematic analysis of the C. basilensis B-8 genome identified degradation steps and intermediates from this bacterial-mediated KL degradation method. Our findings provide a theoretical basis for research into the mechanisms of lignin degradation as well as a practical basis for biofuel production using lignin materials.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference45 articles.
1. Khan SA, Hussain MZ, Prasad S, Banerjee UC, Rashmi : Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 2009,13(9):2361-2372. 10.1016/j.rser.2009.04.005
2. Balat M, Balat M: Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrogen Energ 2009, 34: 3589-3603. 10.1016/j.ijhydene.2009.02.067
3. Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R: Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 2011,28(12):1883-1896. 10.1039/c1np00042j
4. Hammel KE: Fungal degradation of lignin. In Driven by Nature: Plant Litter Quality and Decomposition. Edited by: Cadish G, Giller KE. Wallingford, UK: CAB International; 1997:33-45.
5. Bugg TDH, Ahmad M, Hardiman EM, Singh R: The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 2010, 22: 1-7.
Cited by
359 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献