Author:
Guss Adam M,Olson Daniel G,Caiazza Nicky C,Lynd Lee R
Abstract
Abstract
Background
Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies.
Results
We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+dcm+E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than the similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAMG205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude.
Conclusions
E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference21 articles.
1. Lynd LR: Bioenergy: in search of clarity. Energy & Environ Sci. 2010, 3: 1150-1152. 10.1039/c002335n.
2. Chu S, Goldemburg J: Lighting the way: toward a sustainable energy future. Book Lighting the way: toward a sustainable energy future. 2007, Amsterdam: InterAcademy Council
3. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE: How biotech can transform biofuels. Nat Biotechnol. 2008, 26: 169-172. 10.1038/nbt0208-169.
4. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002, 66: 506-577. 10.1128/MMBR.66.3.506-577.2002. Table of contents
5. Tyurin MV, Desai SG, Lynd LR: Electrotransformation of clostridium thermocellum. Appl Environ Microbiol. 2004, 70: 883-890. 10.1128/AEM.70.2.883-890.2004.
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献