Effects of tea saponin on glucan conversion and bonding behaviour of cellulolytic enzymes during enzymatic hydrolysis of corncob residue with high lignin content

Author:

Feng Yue,Jiang Jianxin,Zhu Liwei,Yue Linyan,Zhang Junhui,Han Shijie

Abstract

Abstract Background Recently, interest in the utilization of corncob residue (CCR, with high lignin of 45.1%) as a feedstock for bioethanol has been growing. Surfactants have been one of the most popular additives intended to prevent the inhibitory effect of lignin on cellulolytic enzymes, thereby improving hydrolysis. In this study, the effects of biosurfactant tea saponin (TS) on the enzymatic hydrolysis of CCR and the bonding behavior of cellulolytic enzymes to the substrate were investigated. The surface tension in the supernatant was also detected to obtain information about the characteristics and stability of TS. Results The glucose concentration was 17.15 mg/mL at 120 hours of hydrolysis with the low loading of cellulolytic enzymes (7.0 FPU/g cellulose and 10.5 BGU/g cellulose) and 5% CCR. The optimal dosage of TS was its critical micelle concentration (cmc, 1.80 mg/mL). The glucose yield was enhanced from 34.29 to 46.28 g/100 g dry matter by TS. The results indicate that TS can promote the adsorption of cellulolytic enzymes on the substrate and mediate the release of adsorbed enzymes. Meanwhile, TS improves the recovery of the cellulolytic enzymes after a hydrolysis cycle and prevents deactivation of the enzymes during the intense shaking process. The surface tension in supernatants of digested CCR with TS remained at 50.00 mN/m during the course of hydrolysis. It is interesting to note that biosurfactant TS can maintain the surface tension in supernatants, despite its digestibility by cellulolytic enzymes. Conclusions Serving as an accelerant of lignocellulose hydrolysis, TS can also be degraded by the cellulolytic enzymes and release glucose while retaining stability, which reduces the cost of both the cellulolytic enzymes and the additive. As the glucose from the TS could be utilized by yeast, further efforts will investigate the mechanism of function and the application of TS in the production of ethanol by simultaneous saccharification and fermentation (SSF).

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3