Author:
Gupta Rishi,Kumar Sanjay,Gomes James,Kuhad Ramesh Chander
Abstract
Abstract
Background
Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach.
Results
The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v) and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time.
Conclusion
Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference20 articles.
1. Gupta R, Sharma KK, Kuhad RC: Separate hydrolysis and fermentation (SHF) of Prosopis juliflor a, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipiti s-NCIM 3498. Bioresour Technol 2009, 100: 1214-1220. 10.1016/j.biortech.2008.08.033
2. Kuhad RC, Gupta R, Khasa YP: Bioethanol production from lignocellulosics: an overview. In Wealth from waste. Edited by: Lal B, Sharma PM. New Delhi, India: Teri press; 53-106.
3. Galbe M, Zacchi G: A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 2002, 59: 618-628. 10.1007/s00253-002-1058-9
4. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, et al.: How biotech can transform biofuels. Nat Biotechnol 2008, 26: 169-172. 10.1038/nbt0208-169
5. Bansal P, Hall M, Realf MJ, Lee JH, Bommarius AS: Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 2009, 27: 833-848. 10.1016/j.biotechadv.2009.06.005
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献