Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum

Author:

Shi Hao,Li Xun,Gu Huaxiang,Zhang Yu,Huang Yingjuan,Wang Liangliang,Wang Fei

Abstract

Abstract Background β-Xylosidase is an important constituent of the hemicellulase system and it plays an important role in hydrolyzing xylooligosaccharides to xylose. Xylose, a useful monose, has been utilized in a wide range of applications such as food, light, chemical as well as energy industry. Therefore, the xylose-tolerant β-xylosidase with high specific activity for bioconversion of xylooligosaccharides has a great potential in the fields as above. Results A β-xylosidase gene (Tth xynB3) of 2,322 bp was cloned from the extremely thermophilic bacterium Thermotoga thermarum DSM 5069 that encodes a protein containing 774 amino acid residues, and was expressed in Escherichia coli BL21 (DE3). The phylogenetic trees of β-xylosidases were constructed using Neighbor-Joining (NJ) and Maximum-Parsimony (MP) methods. The phylogeny and amino acid analysis indicated that the Tth xynB3 β-xylosidase was a novel β-xylosidase of GH3. The optimal activity of the Tth xynB3 β-xylosidase was obtained at pH 6.0 and 95°C and was stable over a pH range of 5.0-7.5 and exhibited 2 h half-life at 85°C. The kinetic parameters K m and V max values for p-nitrophenyl-β-D-xylopyranoside and p-nitrophenyl-α-L-arabinofuranoside were 0.27 mM and 223.3 U/mg, 0.21 mM and 75 U/mg, respectively. The k cat /K m values for p-nitrophenyl-β-D-xylopyranoside and p-nitrophenyl-α-L-arabinofuranoside were 1,173.4 mM-1 s-1 and 505.9 mM-1 s-1, respectively. It displayed high tolerance to xylose, with K i value approximately 1000 mM. It was stimulated by xylose at higher concentration up to 500 mM, above which the enzyme activity of Tth xynB3 β-xylosidase was gradually decreased. However, it still remained approximately 50% of its original activity even if the concentration of xylose was as high as 1000 mM. It was also discovered that the Tth xynB3 β-xylosidase exhibited a high hydrolytic activity on xylooligosaccharides. When 5% substrate was incubated with 0.3 U Tth xynB3 β-xylosidase in 200 μL reaction system for 3 h, almost all the substrate was biodegraded into xylose. Conclusions The article provides a useful and novel β-xylosidase displaying extraordinary and desirable properties: high xylose tolerance and catalytic activity at temperatures above 75°C, thermally stable and excellent hydrolytic activity on xylooligosaccharides.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3