Author:
Chen Hsin-Liang,Chen Yo-Chia,Lu Mei-Yeh Jade,Chang Jui-Jen,Wang Hiaow-Ting Christine,Ke Huei-Mien,Wang Tzi-Yuan,Ruan Sz-Kai,Wang Tao-Yuan,Hung Kuo-Yen,Cho Hsing-Yi,Lin Wan-Ting,Shih Ming-Che,Li Wen-Hsiung
Abstract
Abstract
Background
Cellulose, which is the most abundant renewable biomass on earth, is a potential bio-resource of alternative energy. The hydrolysis of plant polysaccharides is catalyzed by microbial cellulases, including endo-β-1,4-glucanases, cellobiohydrolases, cellodextrinases, and β-glucosidases. Converting cellobiose by β-glucosidases is the key factor for reducing cellobiose inhibition and enhancing the efficiency of cellulolytic enzymes for cellulosic ethanol production.
Results
In this study, a cDNA encoding β-glucosidase was isolated from the buffalo rumen fungus Neocallimastix patriciarum W5 and is named NpaBGS. It has a length of 2,331 bp with an open reading frame coding for a protein of 776 amino acid residues, corresponding to a theoretical molecular mass of 85.1 kDa and isoelectric point of 4.4. Two GH3 catalytic domains were found at the N and C terminals of NpaBGS by sequence analysis. The cDNA was expressed in Pichia pastoris and after protein purification, the enzyme displayed a specific activity of 34.5 U/mg against cellobiose as the substrate. Enzymatic assays showed that NpaBGS was active on short cello-oligosaccharides from various substrates. A weak activity in carboxymethyl cellulose (CMC) digestion indicated that the enzyme might also have the function of an endoglucanase. The optimal activity was detected at 40°C and pH 5 ~ 6, showing that the enzyme prefers a weak acid condition. Moreover, its activity could be enhanced at 50°C by adding Mg2+ or Mn2+ ions. Interestingly, in simultaneous saccharification and fermentation (SSF) experiments using Saccharomyces cerevisiae BY4741 or Kluyveromyces marxianus KY3 as the fermentation yeast, NpaBGS showed advantages in cell growth, glucose production, and ethanol production over the commercial enzyme Novo 188. Moreover, we showed that the KY3 strain engineered with the NpaNGS gene can utilize 2 % dry napiergrass as the sole carbon source to produce 3.32 mg/ml ethanol when Celluclast 1.5 L was added to the SSF system.
Conclusion
Our characterizations of the novel β-glucosidase NpaBGS revealed that it has a preference of weak acidity for optimal yeast fermentation and an optimal temperature of ~40°C. Since NpaBGS performs better than Novo 188 under the living conditions of fermentation yeasts, it has the potential to be a suitable enzyme for SSF.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference43 articles.
1. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002,66(3):506-577. 10.1128/MMBR.66.3.506-577.2002
2. Theodorou MK, Longland AC, Dhanoa MS, Lowe SE, Trinci APJ: Growth of Neocallimastix sp. strain R1: on Italian ryegrass hay: removal of neutral sugars from plant cell walls. Appl Environ Microbiol 1989,55(6):1363-1367.
3. Da-Silva R, Gomes E, Franco CML: Pectinases, hemicelulase e cellulases substrate, production application no processamento de alimentos. Bol SBCTA 1997, 31: 249-250.
4. Wubah DA: Anaerobic zoosporic fungi associated with animals. In Biodiversity of Fungi: Inventory and Monotoring Methods. In . Edited by: Mueller GM, Bills GF, Foster MS. Elsevier Academic Press, Burlington, MA; 2004:501-510.
5. Woodward J, Lima M, Lee NE: The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem J 1982,255(3):895-899.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献