Author:
Barta Zsolt,Reczey Kati,Zacchi Guido
Abstract
Abstract
Background
Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation.
Results
Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case.
Conclusions
Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference33 articles.
1. Gray KA, Zhao LS, Emptage M: Bioethanol. Curr Opin Chem Biol 2006, 2: 141-146. 10.1016/j.cbpa.2006.02.035
2. Farrell AE, Plevin RJ, Turner BT: Ethanol can contribute to energy and environmental goals. Science 2006, 5760: 506-509. 10.1126/science.1121416
3. Lignocellulosic ethanol pilot plant in Salamanca, Spain (Abengoa Bioenergy Inc)2010. [http://www.abengoabioenergy.com/corp/web/en/acerca_de/oficinas_e_instalaciones/bioetanol/europa/biocarburantes_cast_leon/index.html]
4. Lignocellulosic ethanol pilot plant in Ottawa, Canada (Iogen Inc)2010. [http://www.iogen.ca/company/facilities/index.html]
5. Lignocellulosic ethanol pilot plant in Örnsköldsvik, Sweden (SEKAB E-Technology AB)2010. [http://www.sekab.com/default.asp?id=2018refid=2030]
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献