Author:
Wi Seung Gon,Choi In Seong,Kim Kyoung Hyoun,Kim Ho Myeong,Bae Hyeun-Jong
Abstract
Abstract
Background
Rice straw has considerable potential as a raw material for bioethanol production. Popping pretreatment of rice straw prior to downstream enzymatic hydrolysis and fermentation was found to increase cellulose to glucose conversion efficiency. The aim of this study was to investigate the influence of popping pretreatment and determine the optimal enzyme loading using a surface response design.
Results
The optimal doses of cellulase and xylanase enzymes were 23 FPU and 62 IU/g biomass, respectively. Using the optimized enzyme condition and popping pretreatment of rice straw (15% substrate loading, w/v), a sugar recovery of 0.567 g/g biomass (glucose; 0.394 g/g) was obtained in 48 h, which was significantly higher than that from untreated rice straw (total sugar recovery; 0.270 g/g biomass). Fermentation of the hydrolyzates by Saccharomyces cerevisiae resulted in 0.172 g ethanol/g biomass after 24 h, equivalent to 80.9% of the maximum theoretical yield (based on the amount of glucose in raw material). Changes in the chemical composition and surface area of rice straw were also investigated before and after popping pretreatment. The results showed little or no difference in chemical composition between the pretreated rice straw and the control. However, the surface area of pretreated rice straw increased twofold compared to the control.
Conclusion
Popping pretreatment of rice straw can effectively improve downstream saccharification and fermentation, important for bioethanol production.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference30 articles.
1. Kim S, Dale BE: Global potential bioethanol from wasted crops and crop residues. Biomass Bioenerg 2004, 26: 361-375. 10.1016/j.biombioe.2003.08.002
2. Naik SN, Goud VV, Rout PK, Dalai AK: Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 2010, 14: 578-597. 10.1016/j.rser.2009.10.003
3. Sarkar N, Ghosh SK, Bannerjee S, Aikat K: Bioethanol production from agricultural wastes: an overview. Renew Energ 2012, 37: 19-27. 10.1016/j.renene.2011.06.045
4. McAloon A, Taylor F, Yee W, Ibsen K, Wooley R: Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks. NREL/TP-580-28893. Golden, CO (USA): National Renewable Energy Laboratory; 2000.
5. Cherubini F, Ulgiati S: Crop residues as raw materials for biorefinery systems – A LCA case study. Appl Energy 2010, 87: 47-57. 10.1016/j.apenergy.2009.08.024
Cited by
137 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献