Author:
Studer Michael H,Brethauer Simone,DeMartini Jaclyn D,McKenzie Heather L,Wyman Charles E
Abstract
Abstract
Background
The BioEnergy Science Center (BESC) developed a high-throughput screening method to rapidly identify low-recalcitrance biomass variants. Because the customary separation and analysis of liquid and solids between pretreatment and enzymatic hydrolysis used in conventional analyses is slow, labor-intensive and very difficult to automate, a streamlined approach we term 'co-hydrolysis' was developed. In this method, the solids and liquid in the pretreated biomass slurry are not separated, but instead hydrolysis is performed by adding enzymes to the whole pretreated slurry. The effects of pretreatment method, severity and solids loading on co-hydrolysis performance were investigated.
Results
For hydrothermal pretreatment at solids concentrations of 0.5 to 2%, high enzyme protein loadings of about 100 mg/g of substrate (glucan plus xylan) in the original poplar wood achieved glucose and xylose yields for co-hydrolysis that were comparable with those for washed solids. In addition, although poplar wood sugar yields from co-hydrolysis at 2% solids concentrations fell short of those from hydrolysis of washed solids after dilute sulfuric acid pretreatment even at high enzyme loadings, pretreatment at 0.5% solids concentrations resulted in similar yields for all but the lowest enzyme loading.
Conclusions
Overall, the influence of severity on susceptibility of pretreated substrates to enzymatic hydrolysis was clearly discernable, showing co-hydrolysis to be a viable approach for identifying plant-pretreatment-enzyme combinations with substantial advantages for sugar production.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献