Author:
Mendu Venugopal,Harman-Ware Anne E,Crocker Mark,Jae Jungho,Stork Jozsef,Morton Samuel,Placido Andrew,Huber George,DeBolt Seth
Abstract
Abstract
Background
Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed.
Results
Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented.
Conclusions
Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference53 articles.
1. Dale VH, Kline KL, Wiens J, Fargione J: Biofuels: Implications for Land Use and Biodiversity. Biofuels and Sustainability Reports. 2010, Washington, DC: Ecological Society of America, [http://www.esa.org/biofuelsreports/files/ESA%20Biofuels%20Report_VH%20Dale%20et%20al.pdf]
2. Harris D, DeBolt S: Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J. 2010, 8: 244-262. 10.1111/j.1467-7652.2009.00481.x.
3. Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW: Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science. 2010, 330: 1222-1227. 10.1126/science.1194218.
4. Jae JH, Tompsett GA, Lin YC, Carlson TR, Shen JC, Zhang TY, Yang B, Wyman CE, Conner WC, Huber GW: Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci. 2010, 3: 358-365. 10.1039/b924621p.
5. Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol. 2007, 25: 759-761. 10.1038/nbt1316.
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献